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Abstract 

Most conventional simulation techniques account for two-point statistics via the modeling of the 
variogram of the regionalized variable or of its indicators.  These techniques cannot control the 
reproduction of multiple-point statistics or higher order features that may be critical for the 
performance of the models given the goal at hand (flow simulation in petroleum applications, 
planning and scheduling for mining applications). 

Multiple-point simulation is a way to deal with this situation.  It has been implemented for 
categorical variables, yet the demand of large data sets (training images) to infer the multiple-
point statistics has impeded its use in the case of continuous variables.  The main problem is that 
multiple-point statistics are characterized by discretizing the continuous variable by a set of 
thresholds and coding them as indicators, which results in a loss of resolution between 
thresholds.  

We propose a method to incorporate multiple-point statistics into sequential simulation of 
continuous variables.  Any sequential algorithm can be used.  The method proceeds as follows. 
First, the multiple-point statistics are inferred from a training data set or training image with the 
typical indicator approach. The conditional probabilities given multiple-points data events 
enable to update the conditional distributions obtained by the sequential algorithm that uses the 
conventional two-point statistics. The key aspect is to preserve the shape of the conditional 
distribution between thresholds after updating the probability for the cutoffs used to infer the 
multiple-point statistics. Updating takes place under the assumption of conditional independence 
between the conditional probability obtained from the training set and the one retrieved from the 
conditional probability defined by the sequential method. The algorithm is presented for any 
sequential algorithm and then illustrated on a real data set using the sequential indicator and 
Gaussian simulation methods.  The advantages and drawbacks of this proposal are pointed out. 

Introduction 

Geostatistical simulation is being used increasingly for uncertainty quantification. Traditionally, 
simulation methods only rely on the inference and modeling of a variogram that characterizes the 
spatial continuity of the variable of interest (see for example Goovaerts, 1997; Chilès and 
Delfiner, 1999). However, in most real applications the variogram cannot capture some important 
features of the true variable. The main reason for the poor performance of models built using 
conventional simulation tools is that variogram models only control the joint behavior of pairs of 
points and there is no explicit control on the joint behavior of multiple points. The algorithm used 
and its underlying assumptions dictates how relationships between multiple points are controlled.  
Two-point statistics such as the variogram or covariance are not enough to describe some 
complex features that the real phenomenon may present.  
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This problem was addressed for categorical variables by Guardiano and Srivastava (1993) in the 
early nineties. They introduced the idea of going beyond bivariate moments, through the use of 
extended normal equations. The method was based on using a training image for inferring the 
multiple-point indicator frequencies and then drawing an indicator value for the categorical 
variable given the probability of the unknown node to belong to each category (facies). This 
approach was improved by the implementation of Strebelle and Journel (2000) called single 
normal equation, where a search tree was used to find the multiple-point frequencies. Deutsch 
(1992) proposed the integration of multiple-point statistics in a simulated annealing framework. 
Caers and Journel (1998) used neural networks to infer the conditional distributions in a non-
linear fashion considering multiple-point statistics. Both authors relied on the use of training 
images and their applications were oriented to categorical variables. 

More recently, Ortiz and Deutsch (2004) suggested the use of multiple-point statistics extracted 
from production data (blast hole data in mining applications). These statistics are integrated into 
sequential indicator simulation. The probability of an unsampled location to belong to a class 
defined by two cutoffs can be approximated using the probability obtained by conventional 
indicator kriging or using the probability estimated from the training data for the same 
configuration of class grades in nearby informed locations. These two statistics can be combined 
under the assumption that they are conditionally independent (Journel, 2002). 

In this article, we extend the approach proposed by Ortiz and Deustch (2004) to integrate 
multiple-point statistics in any sequential simulation algorithm. The key aspect is to infer the 
conditional distribution and then update it only at few thresholds, preserving its shape as much as 
possible. The proposed approach is implemented on a case study, where two benches of a copper 
mine are simulated using sequential Gaussian and indicator sequential simulation and then 
updated using multiple-point statistics. 

Inferring multiple-point statistics 

Inference of multiple-point statistics is a difficult problem and requires having abundant data over 
a large domain. Furthermore, these should be regularly spaced to allow repetition of patterns of 
several points. In practice, this problem has been solved using training images. Alternatively, in 
mining applications, the use of abundant and pseudo-regular production data from samples taken 
in blast holes can replace the training image (Ortiz, 2003; Ortiz and Deutsch, 2004).  

Inference of the multiple-point statistics is done using the indicator coding. First, a number of 
thresholds are defined and a multiple-point pattern is used to scan the training image or training 
data set. For each threshold, the training data are coded as one if they belong to the corresponding 
class, that is, if the value is lower than or equal to the corresponding threshold value, and zero 
otherwise. From the scanning of the training image or data set, the probability of a node being 
less than or equal to the threshold can be calculated based on the experimental frequencies of that 
event.  

Since there is no modeling of the experimental multiple-point frequencies, an important limitation 
of this procedure is that the training data set and modeling scale must be equivalent. That is, the 
spacing of the (pseudo-)regular data in the training set must be identical to the spacing between 
nodes that are simulated subsequently. A second problem of this data-driven approach is that 
mathematical inconsistencies between statistics inferred from the training data and from the 
sample data used to condition the simulation may exist.  
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Updating conditional distributions with multiple-point statistics 

The proposed approach to update conditional distributions with multiple-point statistics consists 
in the following steps: 

1. Define a random path to visit the nodes in the simulation grid. 

2. At every visited node, determine the conditional distribution by simple kriging of the 
(coded) sample data and previously simulated nodes.  

3. Discretize the conditional distribution by a set of thresholds, which are interpreted as the 
conditional probability of the variable at that location not to exceed the corresponding 
threshold value. 

4. Update the conditional probabilities originated from discretizing the conditional 
distribution by assuming conditional independence between them and the probability of a 
node to exceed the corresponding threshold given the multiple-point configuration of 
(coded) original sample data and previously simulated nodes.  

5. Fill in the discretized conditional distribution using some interpolation rule and, more 
importantly, extrapolation of the tails. 

6. Draw a uniform random value in [0,1] to read from the conditional distribution a 
simulated value. 

7. Proceed to the next node in the random path until all nodes have been simulated. 

The updating technique described in step 4 was presented by Journel (2002) under the name of 
permanence of ratios assumption, but it is equivalent to the well-known conditional independence 
assumption used in the Naïve Bayes classifiers (Warner et al, 1961; Anderson, 1974; Friedman, 
1997).  

This methodology can be applied to any sequential simulation algorithm where the conditional 
distribution at the simulation nodes has been defined. The most straightforward approach would 
be to apply it in an indicator context (Ortiz and Deutsch, 2004). In the following sections we 
present the details of implementing this method using indicator, Gaussian, isofactorial and direct 
simulation.  

Implementation 

Let the event A be the probability of a node not to exceed a threshold. Event B is defined by the 
information provided by n single point events: { }nn iIiIiI === )(,...,)(,)( 2211 uuu . Finally, event 
C is the multiple-point event defined by the values of the indicators of m points: 
{ }mm iIiIiI ′=′′=′′=′ )(,...,)(,)( 2211 uuu  (some of the n points belonging to B may also be part of C).  

Indicator, Gaussian, isofactorial, or direct simulation can provide a conditional distribution that 
allows the calculation of P(A | B). The training dataset provides an estimate of P(A | C). 
Obtaining P(A | B, C) requires knowing the relationship between B and C, which is generally 
extremely difficult to get. Some assumption is required. These probabilities are combined 
assuming they are conditionally independent given A, that is, considering the expression for 
P(A | B, C)  and ),|(1),|( CBACBA PP −= : 
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It can be seen that, under the assumption of conditional independence, the probability of event A 
can be calculated with relative ease, since it does not require knowing the relationship between B 
and C. We now present four cases where this approximation can be implemented. 

INDICATOR SIMULATION 

Consider the usual indicator coding: 
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where z(uα) is the value at location uα. This can be interpreted as a probability: 

{ } )()(Prob);()( kkk zFzzziP =≤== αα uuA  

For a simulated node located at u0, the conditional probability given the data in a search 
neighborhood can be calculated by simple indicator kriging (Journel, 1983; Alabert, 1987): 
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where (n) represents the conditioning information provided by n samples and previously 
simulated nodes in the search neighborhood, );( 0 k

SIK zuαλ  for α = 1,…,n are the simple indicator 
kriging weights, and F(zk) is the global proportion below threshold zk. 

From the training information, a different conditional probability can be obtained for z(u0) to be 
less than or equal to zk, given the information of an m-point configuration: 

{ }[ ]*0 )(|)(Prob)|( MPk mzzP ≤= uCA  
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The conditional probabilities obtained by simple indicator kriging can be updated with the 
conditional probabilities obtained from the training dataset, allowing the calculation of the 
conditional distribution that accounts for both, the set of n single point events and the single m-
points event. Since the discretization of the conditional distributions by the indicator approach is 
generally coarse, the updated conditional distribution will also be a coarse approximation of the 
conditional distribution. The usual interpolation between the estimated indicators and 
extrapolation beyond the first and last thresholds is necessary (Deutsch and Journel, 1998).  

Gaussian Simulation 

A natural extension to the implementation presented above is to update conditional probabilities 
obtained via a multigaussian sequential simulation. The method requires the transformation of the 
original distribution into a standard Gaussian distribution: 

))(()( uu YZ φ=  

It is widely known that under the assumption of multivariate gaussianity, the conditional 
distributions are fully defined by the mean and variance obtained by simple kriging: 
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The expression for the conditional distribution is: 
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An indicator-based approach to update these conditional distributions would consist in 
discretizing them into a series of thresholds, which can be easily done numerically, and then 
updating these conditional probabilities with the conditional probabilities obtained from the 
training set. Again, a decision about how to interpolate between the discrete points and beyond 
the first and last thresholds is necessary; however, in this case, the thresholds can discretize the 
conditional distribution more precisely than in indicator simulation. For instance, instead of 
taking ten to fifteen thresholds, over a hundred thresholds can be easily taken, provided sufficient 
training information is available for reliable estimation of the conditional probabilities P(A | C). 

Isofactorial Simulation 

The next case of interest corresponds to sequential isofactorial simulation (Emery, 2002). Again, 
this method relies on a transformation of the original distribution into a new variable that follows 
an isofactorial distribution with marginal pdf f(.). Notice that the transformation function may 
differ from the one used in the case of sequential Gaussian simulation and that f(.) is not 
necessarily the standard Gaussian pdf. Typical applications consider transforming the raw 
variable to a Gaussian or Gamma distributions, although other cases can be considered, such as a 
Beta, Poisson, Binomial or Negative Binomial distribution. The conditional probability can be 
obtained by disjunctive kriging of the indicator function at a given threshold zk: 
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where the coefficients are calculated as:  
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and each factor ( ){ }N∈pYp ,)( 0uχ  is estimated by simple kriging from its values at the 
neighboring data locations: 

( )[ ] ( ))()()(
1

0,
*

0 α
α

α χλχ uuu YY p

n
SK

pSKp ⋅= ∑
=

 

The weights )( 0, uSK
pαλ  are obtained by solving a simple kriging system considering a covariance 

function that depends on the isofactorial distribution and on the degree p. In practice only the first 
few factors are required (Matheron, 1976; Rivoirard, 1994; Chilès and Delfiner, 1999).  

As with the conditional probabilities estimated by indicator kriging or under the multigaussian 
assumption, a probability conditional to the multiple-point event for each threshold can be 
estimated using the training data set, and subsequently used to update the conditional probability 
estimated under the isofactorial framework.  

Direct Simulation 

One last algorithm that could be considered is direct sequential simulation, which basically works 
by estimating the mean and variance of the conditional distribution by simple kriging. The shape 
of this distribution is then determined either by sampling the global distribution to match the 
mean and variance of the local conditional distribution (Soares, 2001), or by defining a 
conditional distribution lookup table (Oz et al., 2003). The procedure is virtually the same as in 
Gaussian simulation: obtain the conditional probability from the local distribution and update it 
with the multiple-point probability inferred from the training dataset. 

Case Study 

The following case study presents some preliminary results about the application of the proposed 
methodology to simulate the point-support grades on a copper deposit, based on drill hole 
(exploration) information. The multiple-point statistics are extracted from production (blast hole) 
data obtained from two benches already mined out. This information is used to simulate the 
copper grade on two lower benches. An assumption of strict stationarity is required in order to 
“export” these multiple-point statistics. The example shows the updating technique implemented 
for the sequential indicator and Gaussian simulation algorithms.  

Figure 1 shows the exploration data for a specific bench and the training information from one of 
the two benches used for multiple-point statistics inference. These statistics are inferred using a 5 
points pattern made of a central node and the four adjacent nodes in the horizontal plane (no 
vertical data has been used for the multiple-point statistics inference). Figure 2 displays 
realizations for a specific bench using sequential indicator and Gaussian simulation and the 
proposed methods where the conditional distributions are updated with multiple-point statistics 
extracted from the production data. The typical “patchiness” of indicator simulation appears 
clearly in the maps. This characteristic appears more strongly when multiple-point information is 
incorporated under the assumption of conditional independence. The patchiness disappears when 
using the Gaussian algorithm as a base method for inferring the conditional distributions: in this 
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case, transitions from high to low grade zones are smoother. However, the integration of 
multiple-point statistics injects more connectivity to the realization.  

 

 
Figure 1. Left: Exploration (drill holes) data. Right: production (blast holes) data. Only the data 
in one bench are displayed. Production data are used to infer the multiple-point statistics. 

 
Figure 2. Plan views of the two benches simulated using sequential indicator simulation updated 
with multiple-point statistics. 

Table 1 shows the total copper content and quantity of metal above a cutoff of 0.7 %Cu 
calculated over a particular area using the four methods for 20 × 20 × 12 m3 panels. Smoother 
transitions and the added connectivity explain the higher variance obtained first, between 
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indicator and Gaussian methods, and second, between the cases without and with multiple-point 
information. Validation remains a difficult issue and further research is required in this respect. 

The implementation of these algorithms has shown some of the possible problems of their 
application. Numerical approximations are required to interpolate and extrapolate the tails once 
the discretization in indicators is performed for the updating procedure. Furthermore, the number 
of thresholds used depends on the quality and size of the training data set, in order to ensure 
reliable estimation of the multiple-point statistics. 

 
 Cutoff = 0 %Cu Cutoff = 0.7 %Cu 

 Mean Std. Dev. Mean Std. Dev. 
SISIM 69.25 1.43 67.12 1.71 
SISIM-MP 70.88 1.72 67.44 2.06 
SGSIM 69.85 1.64 67.54 2.00 
SGSIM-MP 74.27 1.95 71.30 2.32 

Table 1. Total quantity of metal and quantity above a cutoff of 0.7 %Cu from the sets of 100 
realizations obtained with each method (in thousands of copper tonnes). 

Conclusions 

Integrating multiple-point statistics into sequential simulation algorithms can be achieved under 
some assumption of the relationship (redundancy) between the conditional probability inferred 
from a training data set, given a multiple-point event, and the conditional probability inferred by a 
conventional kriging approach (indicator, multigaussian, or disjunctive kriging). We propose 
assuming conditional independence between these two sources of information, to obtain an 
estimate of the conditional probability that accounts for the neighboring data (n points) and the 
closest multiple point configuration (m points). The updating methodology proposed can be 
applied to any sequential simulation algorithm, provided that a conditional distribution is 
calculated at each simulation node on the grid.  

Implementation of this technique has proven challenging, particularly because of possible 
inconsistencies between the sources of information (biases) where the statistics are inferred, and 
because of numerical approximations (particularly when extrapolating the tails) required to obtain 
the simulated values from the updated conditional distributions. Furthermore, the assumption 
itself should be investigated. A model that accounts for the redundancy between the sources of 
information could be easily constructed by defining a parameter τ, such that: P(C | A)τ ≈ 
P(C | A, B), hence: 

τ
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However, the parameter is difficult to get and, to make things worse, it is location and data 
dependent. 

The proposal in this article opens an interesting and original research avenue about the use of 
multiple-point statistics in a data-driven mode. Implementation and applications to real data will 
offer challenges that have yet to be discovered. 
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